
Hall emf features in bipolar media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 9163

(http://iopscience.iop.org/0953-8984/12/43/306)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 9163–9166. Printed in the UK PII: S0953-8984(00)14274-2

Hall emf features in bipolar media

A Konin and R Raguotis
Semiconductor Physics Institute, Goštauto 11, 2600 Vilnius, Lithuania
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Abstract. An expression for the Hall electromotive force (emf) in a bipolar bounded
semiconductor sample is obtained by taking into account both volume and surface recombination
rates. It is shown that the Hall emf value has non-linear dependence on the sample thickness. The
Hall emf value also depends significantly on the surface parameters, such as surface recombination
rates and surface conductivity of carriers.

1. Introduction

It has been shown [1] that the determination of the thermo-electromotive force (emf) in bipolar
semiconductor samples differs in principle from the monopolar semiconductor case. The
theoretical model [1] generalized in [2] shows that the thermo-emf depends on the surface
semiconductor parameters in any size sample of semiconductors.

Although the thermo-emf arises under the influence of the thermodynamic ‘external
force’ and the Hall emf arises under the influence of the Lorenz force, the common scheme
[1] is valid for the determination of the emf of any nature. So, we expect the revealing
of the Hall emf dependence on the same surface parameters as in [2]. We note that the
dependences of thermoelectric and Hall currents [3] on semiconductor volume parameters are
different. Thermo-current is proportional to the thermo-emf coefficient while the Hall current
is proportional to the carrier’s mobility. Therefore, different dependences of the thermo-emf
and the Hall emf on the volume and surface semiconductor parameters can be expected.

The goal of this present work is to find an expression for the Hall emf in a finite
semiconductor, taking into account surface parameters.

2. Theory

Let us treat the semiconductor sample as having parallelepiped form (−a � x � a,
−b � y � b, −d � z � d) and a � b, d. We assume that the external electric field E
is applied along the y-axis and the external weak magnetic field B is applied along the z-axis.

The distributions of carrier densities and potential are obtained from the equations [2]
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and from the boundary conditions [1, 2]
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Here jxn and jxp are the electron and hole current densities,
n and
p are non-equilibrium
electron and hole densities, τn,p is the lifetime of electrons and holes, ϕ is electrostatic potential,
ε is the electrical permittivity, ε0 is the vacuum permittivity, S±

n,p are the surface recombination
rates (SRRs), ξ±

n,p = limx→±aσn,p are the surface conductivities of electrons and holes [1],

Fn,p is the variation of chemical potential of electrons and holes caused by the deviation of
their densities from the equilibrium one


Fn = kT ln(1 +
n/n0) 
Fp = kT ln(1 +
p/p0)

n0, p0 are equilibrium densities of carriers, ϕ+ = ϕ(a + 0), ϕ− = ϕ(−a − 0), e is hole charge
and 2a is sample thickness.

The equations for currents take the form [3]
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Here n, p are carrier densities, n = n0 + 
n, p = p0 + 
p, µn,p are electron and hole
mobilities, T is the semiconductor temperature, k is the Boltzmann constant and bn,p is the
Hall factor. In a non-degenerate semiconductor [4]

bn = �(2qn + 5/2)�(5/2)

�(qn + 5/2)
bp = �(2qp + 5/2)�(5/2)

�(qp + 5/2)
.

Here �(. . .) is the gamma function and qn,p is the parameter characterizing the carrier
momentum relaxation mechanism [5]. Note that usually bn = bp.

We investigate the case of small carrier densities deviation from equilibrium 
n � n0

and 
p � p0. At the same time 
Fn = kT
n/n0 and 
Fp = kT
p/p0. In addition,
for simplicity we assume that the boundary conditions are symmetrical: S+

n = S−
n = Sn,

S+
p = S−

p = Sp, ξ+
n = ξ−

n = ξn, ξ+
p = ξ−

p = ξp.
Solving equations (1)–(4) we obtain for the Hall emf 
ϕH = ϕ+ − ϕ−:


ϕH = −D−12abnµnEB[(1 + β)(νp − χγ 2ηθνn) tanh u + (1 + θ)(1 − χβγ 2η)

+(1 + χγ )(βγ η − θ)u−1 tanh u] (6)

where

D = (1 + θ)(1 + βγ η) + (1 + β)(νp + γ ηθνn) tanh u.

Here β = p0/n0, γ = µp/µn, η = τp/τn, χ = bp/bn, θ = ξp/ξn,

λ =
√
kT µnµpτnτp(n0 + p0)

e(n0µnτn + p0µpτp)

is the diffusion length, νn,p = Sn,pτn,p/λ is the normalized SRR and u = a/λ is the normalized
sample thickness.
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Figure 1. Hall emf in intrinsic Ge versus sample thickness for ξn = 2ξp and for the various
normalized SRR values νn,p .

Figure 2. Hall emf in intrinsic Ge versus sample thickness for ξp = 2ξn and for the various
normalized SRR values νn,p .

Equation (6) for the Hall emf is obtained assuming that diffusion length significantly
exceeds the Debye length [2], that usually occurs. The same expression for the Hall emf is
obtained from the common expression [1]
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Here integration in the sample volume is performed by x from −a to a, and σn = enµn,
σp = epµp.
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3. Discussion of results

The Hall emf, as can be seen in equation (6), is not proportional to the sample thickness.
Moreover, the Hall emf depends on volume and surface parameters and this dependence takes
place in the sample of arbitrary thickness.

The dependence of the Hall emf 
ϕH on normalized sample thickness a/λ is presented
in figures 1 and 2 for the various normalized SRR values νn,p in intrinsic Ge at T = 310 K
(λ = 0.1 cm, µn = 3800 cm2 V−1 s−1, µp = 1800 cm2 V−1 s−1). The electric field is equal
to E = 5 V cm−1 and the magnetic field induction B = −22 mT. As seen in figures 1 and 2,
the Hall emf depends strongly on the SRRs and even changes its sign to the opposite one. The
non-linearity of the function 
ϕ(u) depends on the surface conductivity ratio θ = ξp/ξn and
its value is large in the case of ξp = 2ξn.

It is seen from the comparison of the Hall emf (equation (6)) with the expression of the
thermo-emf [2], that their dependences on the volume and surface parameters are different.
Therefore, the thermo-emf and the Hall emf, as well as the Dember and photomagnetic emf
measurement on the same semiconductor sample, give the possibility to determine carrier
surface conductivity and surface recombination rates. This is very important because, to the
best of our knowledge, there are no methods for the determination of surface conductivity.
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